Mitochondria and vascular pathology.

نویسندگان

  • Fabio Di Lisa
  • Nina Kaludercic
  • Andrea Carpi
  • Roberta Menabò
  • Marco Giorgio
چکیده

Functional and structural changes in mitochondria are caused by the opening of the mitochondrial permeability transition pore (PTP) and by the mitochondrial generation of reactive oxygen species (ROS). These two processes are linked in a vicious cycle that has been extensively documented in ischemia/reperfusion injuries of the heart, and the same processes likely contribute to vascular pathology. For instance, the opening of the PTP causes cell death in isolated endothelial and vascular smooth muscle cells. Indeed, atherosclerosis is exacerbated when mitochondrial antioxidant defenses are hampered, but a decrease in mitochondrial ROS formation reduces atherogenesis. Determining the exact location of ROS generation in mitochondria is a relevant and still unanswered question. The respiratory chain is generally believed to be a main site of ROS formation. However, several other mitochondrial components likely contribute to ROS generation. Recent reports highlight the relevance of monoamine oxidases (MAO) and p66(Shc). For example, the absence of p66(Shc) in hypercholesterolemic mice has been reported to reduce the occurrence of foam cells and early atherogenic lesions. On the other hand, MAO inhibition has been shown to reduce oxidative stress in many cell types eliciting significant protection from myocardial ischemia. In conclusion, evidence will be presented to demonstrate that (i) mitochondria are major sites of ROS formation; (ii) an increase in mitochondrial ROS formation and/or a decrease in mitochondrial antioxidant defenses exacerbate atherosclerosis; and (iii) mitochondrial dysfunction is likely a relevant mechanism underlying several risk factors (i.e., diabetes, hyperlipidemia, hypertension) associated with atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxicity mechanisms of Cigarette Smoke on Eye and Kidney using Isolated Mitochondria

Cigarette smoking is one of the main risk factors for premature human death associated to a variety of respiratory and vascular diseases, and cancer due to containing Hundreds of toxicants. Rat mitochondria were obtained by differential ultracentrifugation and incubated with different concentrations (1, 10 and 100%) of standardized cigarette smoke extract (CSE). Our results showed that cigarett...

متن کامل

H2S in the Vasculature: Controversy of Mechanisms in Physiology, Pathology and Beyond

Hydrogen sulfide (H2S) is an endogenously gaseous messenger with a number of physiological effects. Pharmacological and genetic models point toward an important role for this vasodilator gas in the regulation of vascular tone, cardiac response to ischemia/reperfusion injury, and inflammation among others. Understanding the complex interaction of H2S with basic cellular signaling and its impact ...

متن کامل

The Difference of Expression of 18 Genes in Axillary Invasion and Vascular Invasion Compared to Control Samples in Breast Cancer

Background & Objective: Recent studies from gene profiling have revealed some genes that are overexpressed in the epithelial-mesenchymal transition (EMT) process and are responsible for its initiation and activation resulting in tumor progression and metastasis. The present study aimed to assess the role of genes involved in the EMT process and the association of these genes wi...

متن کامل

Vascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology

Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...

متن کامل

Beneficial Effects of Cocoa in Perivascular Mato Cells of Cerebral Arterioles in SHR-SP (Izm) Rats

As previously reported, the cerebral arterioles are surrounded by unique perivascular Mato cells. They contain many inclusion bodies rich in hydrolytic enzymes, and have strong uptake capacity. They are thus considered scavenger cells of vascular and neural tissues in steady-state. In this study, employing hypertensive SHR-SP (Izm) rats, the viability of Mato cells was investigated. In hyperten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pharmacological reports : PR

دوره 61 1  شماره 

صفحات  -

تاریخ انتشار 2009